If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x+3x+1=0
We add all the numbers together, and all the variables
x^2+7x+1=0
a = 1; b = 7; c = +1;
Δ = b2-4ac
Δ = 72-4·1·1
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-3\sqrt{5}}{2*1}=\frac{-7-3\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+3\sqrt{5}}{2*1}=\frac{-7+3\sqrt{5}}{2} $
| 4n+4=3n | | 125=2.10x | | x+36=1.5x | | 3a^2-3a+11=0 | | 13r-12r=18 | | 7k-3k=12+6k | | x=36=1.5x | | 14j-11j=3 | | 2x-16=x+12=180 | | -4.8(6.3x-4.17)=-58.56 | | 1-x+3x=-2(x+1) | | 2x^{2}-14x-13=0 | | √x^2=√687 | | 2*5^x=50 | | 12x-15=6-3x* | | 3(y+3)-y=17 | | -3.8w+4=4.4w-37 | | 50+2x-5=180 | | 26{x+3}=26+3 | | 10=4−3x | | y=⅗×⁵ | | -20y=-250.8 | | (12x-10)=(10x+10) | | 533=-0.04x+20 | | 2.7=i÷0.4 | | y+9=2.10+18.90 | | 5+5x+5(x+4)=31+4 | | 0.4*(1+5x)^0.5=4-x | | n+11=–7 | | X+y+2×=31 | | g+18=9 | | 4x+25+75=180 |